Rhenium(I) methoxo carbonyl complexes containing tetraphosphine or triphosphine ligands; facile separation and X-ray crystallographic studies of $d / l-$ and meso- $\left[\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}-\right.\right.$ $\left.(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-1,1,4,7,10,10\right.$-hexaphenyl-1,4,7,10-tetra-phosphadecane)]

Chenghua Jiang ${ }^{\text {a }}$, Yuh-Sheng Wen ${ }^{\text {b }}$, Ling-Kang Liu ${ }^{\text {b }}$, T.S. Andy Hor ${ }^{\text {a,1 }}$, Yaw Kai Yan ${ }^{\text {c,** }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
${ }^{\mathrm{b}}$ Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
${ }^{\text {c }}$ Division of Chemistry, National Institute of Education, Nanyang Technological University, 469 Bukit Timah Road, Singapore 259756, Singapore

Received 22 June 1999; accepted 26 July 1999

Abstract

Reaction of the activated mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with a $1: 1$ mixture of rac (d / l)- and meso $-1,1,4,7,10,10-$ hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso $-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$. The diastereomers can be easily separated by selective dissolution of $d / l-1$ in benzene, and give clearly distinguishable ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}$-NMR spectra. The fluxional behavior of $d / l-1$ in solution has been studied by variable-temperature ${ }^{1} \mathrm{H}-$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopy. The crystal structures of both d / l - and meso-1 have been determined. Both molecules consist of two $\left\{\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ moieties which are bridged by the two $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{P}$ moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of $d / l-\mathbf{1}$ do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-tdppep $\left.)\right]$ 2, and the analogous reaction involving bis[2diphenylphospinoethyl)phenylphosphine (triphos) gives $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \mu^{\prime}, \eta^{3}-\operatorname{triphos}\right)\left\{\operatorname{Re}_{2}(\mathrm{CO})_{9}\right\}\right] \quad 3$ and $\left[\left\{\operatorname{Re}_{2}(\mu-\right.\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.$-triphos $\left.)\right]$ 4. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Rhenium carbonyl; Amine N-oxide; Carbonyl-methoxo complex; Triphosphine; Tetraphosphine; Multinuclear aggregates

1. Introduction

Low-valent transition metal alkoxo complexes continue to be the focus of much research [1], being postulated as intermediates in many important metalcatalyzed organic transformations [2]. The synthesis, characterization and reactions of rhenium(I) carbonyl alkoxo complexes is the subject of our current interest [3]. Our studies indicated that the reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with $\mathrm{Me}_{3} \mathrm{NO}$ and MeOH results in a complex mixture of mono-, di- and trinuclear rhenium(I) methoxo species, as well as the $\mathrm{Re}-\mathrm{Re}$ bonded species

[^0]$\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\right.$ solvent $\left.)\right]$ [3b]. The mono- and dinuclear methoxo species have been trapped by coordination with diphosphines (PP) [3b-e], and it appears that the diphosphines are most adept at trapping and stabilizing the $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}\right\}$ moiety, since $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mu-\right.$ $\mathrm{PP})(\mathrm{CO})_{6}$] complexes are invariably the major phos-phine-coordinated rhenium methoxo species formed in the reaction of diphosphines with the activated mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH [$3 \mathrm{c}-\mathrm{e}$]. The yield of the diphosphine-coordinated dirhenium methoxo complexes $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mu-\mathrm{PP})(\mathrm{CO})_{6}\right]$ decreases, however, with increasing length of the hydrocarbon chain linking the phosphino groups [3c].
We have now extended the above studies to include the triphosphines bis[2-diphenylphosphinoethyl)phenylphosphine (triphos) and 1,1,1-tris(diphenylphosphi-
nomethyl)ethane (tdppme), and the tetraphosphines 1, 1,4,7,10,10-hexaphenyl-1,4,7,10 - tetraphosphadecane (hptpd) and tris[2-(diphenylphosphino)ethyl]phosphine (tdppep). These phosphines are versatile multidentate ligands for transition metals in a variety of oxidation states, and their complexes have been the subject of studies of catalysis, structure-bonding relationships and spectroscopy [4-6]. The linear tetraphosphine hptpd is especially interesting since it can exist in three stereoisomeric forms (d, l and meso) [6] (Scheme 1). It is hoped that these multifunctional phosphines would be able to scavenge for and trap novel rhenium methoxo intermediates in the activated mixture, or facilitate the formation of novel multinuclear aggregates. It is also noteworthy that, amongst the numerous transition metal polyphosphine complexes reported, there are only a few polyphosphine complexes of rhenium [5a, 7].
In this paper, we report the formation of the complexes (d / l) - and meso- $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}{ }^{-}\right.$ $\left.\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \quad$ 1, $\quad\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-tdppep $\left.)\right]$ 2, $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \mu^{\prime}, \eta^{3}\right.\right.$-triphos $\left.)\left\{\operatorname{Re}_{2}(\mathrm{CO})_{9}\right\}\right] 3$ and $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-triphos $\left.)\right] \mathbf{4}$ in the reactions of the respective polyphosphines with mixtures of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH (Scheme 2). We also report the crystal structures of both $d / l-$ and meso-1, and the study of the fluxional behavior of $d / l-\mathbf{1}$ by variable-temperature ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy. The solid-state laser Raman spectra of d / l -
and meso- $\mathbf{1}$ in the CO-stretching region are also reported.

2. Results and discussion

2.1. Reaction of $1,1,4,7,10,10-h e x a p h e n y l-1,4,7,10-$ tetraphosphadecane (hptpd) with $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH

2.1.1. Formation of $d / l-$ and

 meso- $\left[\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$The commercial hptpd used in this work is a roughly 1:1 mixture of meso-and rac-diastereomers, as shown by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopy. This isomeric mixture was used directly for the reaction without pre-separation as described by Brown and Canning [8].

Reaction of hptpd with the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$, $\mathrm{Me}_{3} \mathrm{NO}$ and MeOH gives the complexes d / l - and meso-$\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$, with a total yield of 18% (based on Re) and a meso: (d / l) ratio of ca. 3:2. We were also able to synthesize $\mathbf{1}$ from the controlled acidolysis [3a] of $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{3}(\mathrm{CO})_{6}\right]^{-}$in the presence of hptpd, with an improved total yield of 41% and a meso:(d/l) ratio of ca. 3:5. The different isomeric ratios obtained by the different synthetic routes can be attributed to the difference in reaction mechanisms [3a, b]. Interestingly, although d / l - and meso- $\mathbf{1}$ have very similar R_{f} values and hence cannot be effectively separated by TLC, they exhibit a great difference in solubility. While meso- $\mathbf{1}$ is almost insoluble in benzene, $d / l-\mathbf{1}$

triphos

meso-hptpd

tdppep

$d-h p t p d$

tdppme

-hptpd

Scheme 1.

1

3

2

Scheme 2.
is readily soluble. This unusual property allows the two diastereomers of $\mathbf{1}$ to be easily separated by benzene extraction, hence obviating the need for pre-separation of the diastereomers of the hptpd ligand, as described in many reports of hptpd complexes [6]. The solubility difference between meso- and $d / l-\mathbf{1}$ is also consistent with that between meso- and rac-hptpd-rac-hptpd is more soluble than meso-hptpd in tetrahydrofuran [9].

2.1.2. Crystal structures of meso- and

 $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{\sigma_{2}}\right\}_{2}\left(\mu, \mu^{\prime}-h p t p d\right)\right] 1$The molecules of both meso-1 (Fig. 1) and $d / l-\mathbf{1}$ (Fig. 2) consist of two $\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ moieties which are bridged by the two $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{P}$ moieties of the hptpd ligand. Thus, the complexes can be thought of as 'dimers' of the dppe complex $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mu-\right.$ dppe)(CO) ${ }_{6}$] [3c]. This clearly illustrates the ability of short-chain diphosphines to stabilize the $\left\{\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{OMe})_{2}\right\}$ moiety.

Although the molecule of meso- $\mathbf{1}$ possesses crystallographic i-symmetry, so that only one-half of the molecule (consisting of one $\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragment and half of the hptpd ligand) is unique, the asymmetrical substitution of $\mathrm{P}(1)$ and $\mathrm{P}(1 \mathrm{a})$ results in the two μ-OMe groups of each $\left\{\operatorname{Re}_{2}(\mu \text {-OMe })_{2}(\mathrm{CO})_{6}\right\}$ fragment being non-equivalent. Consequently, the solution ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of meso $-\mathbf{1}$ shows two separate peaks for the μ-OMe groups.

The $\operatorname{Re}(1) \cdots \operatorname{Re}(2)$ distance of $3.3966(9) \AA$ in meso- 1 is comparable to those in $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mu-\mathrm{dppf})(\mathrm{CO})_{6}\right]$ $[3.4042(6) \AA][3 \mathrm{e}]$ and $\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mu-\mathrm{dppm})(\mathrm{CO})_{6}\right]$ [3.3917(7) Å] [3c]. However, the O-Re-O angle [average $\left.73.1(3)^{\circ}\right]$ in meso- 1 lies between those in $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{OMe})_{2}(\mu-\mathrm{dppf})(\mathrm{CO})_{6}\right]$ [average $\left.71.3(2)^{\circ}\right][3 \mathrm{e}]$ and $\left[\mathrm{Re}_{2}(\mu-\right.$ $\mathrm{OMe})_{2}(\mu-\mathrm{dppm})(\mathrm{CO})_{6}$] [average 74.8(3) ${ }^{\circ}$] [3c]. These features of meso $-\mathbf{1}$ should be similar to those of $\left[\operatorname{Re}_{2}(\mu-\right.$ $\mathrm{OMe})_{2}\left(\mu\right.$-dppe) $\left.(\mathrm{CO})_{6}\right]$, which has not been structurally characterized.
The crystals of $d / l-\mathbf{1}$ (small elongated plates) diffracted rather weakly and gave diffraction data with a rather high $R_{\text {int }}$ value (0.061 based on F^{2}). Consequently, the structural parameters determined have relatively high estimated S.D. Specifics of the bonding within the molecule are therefore not discussed; these are expected to be similar to those observed in meso-1. The essential features of the structure, however, have been established and hence an overall analysis of the gross features of the molecule is still considered valid.
In contrast to the structure of meso-1, the molecule of $d / l-\mathbf{1}$ has a distorted C_{2} symmetry, resulting in all the phosphorus atoms and all the methoxo groups being non-equivalent. As in the meso isomer, however, the $\mathrm{P}-\mathrm{Re}$ bonds in the different $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{PP})\right\}$ fragments of $d / l-\mathbf{1}$ point in approximately opposite directions, probably to minimize steric repulsion between the two $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{PP})\right\}$ fragments. The stereochemical
configurations at $\mathrm{P}(2)$ and $\mathrm{P}(3)$ and the requirement for the trans disposition of the two $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{PP})\right\}$ fragments force the backbone of the hptpd ligand in $d / l-\mathbf{1}$ into a U-shape, as shown in Fig. 2. This is in contrast to the molecule of meso-1, which adopts a linear configuration.

2.1.3. Variable-temperature ${ }^{1} H$ - and ${ }^{31} P-\left\{{ }^{1} H\right\}-N M R$ spectra of d/l-1

The ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of meso- $\mathbf{1}$ at ambient temperature show two ${ }^{1} \mathrm{H}$ peaks due to the methoxo ligands and two ${ }^{31} \mathrm{P}$ peaks, respectively. This is consistent with the crystal structure of meso-1. The room-temperature ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of $d / l-\mathbf{1}$ also show two ${ }^{1} \mathrm{H}$ resonances for the methoxo ligands and two ${ }^{31} \mathrm{P}$ signals. This is, however, inconsistent with the crystal structure of $d / l-\mathbf{1}$, and warrants a study of the variable-temperature ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complex.

At 300 K the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of $d / l-\mathbf{1}$ (Fig. 3) consists of two sharp singlets at 16.7 and 7.9 ppm , which are assigned to the terminal and internal phosphorus atoms, respectively, of the hptpd ligand. At 240 K , the peak at 7.9 ppm broadens and moves slightly upfield, eventually splitting into two peaks at 220 K . The peak at 16.7 ppm is however only slightly broadened at 220 K . At 200 K , the signals due to the internal phosphorus atoms become sharp and clear at 13.8 and -0.9 ppm , and the peak at 16.7 ppm is split into two sharp signals at 17.0 and 16.1 ppm . Thus, at 200 K there are four ${ }^{31} \mathrm{P}$ signals corresponding to the four non-equivalent phosphorus atoms in the crystal structure of $d / l-\mathbf{1}$. At 190 K , the lowest temperature achievable for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, the two peaks at 13.8 and -0.9 ppm
further split into doublets. This is attributed to the coupling between the two internal phosphorus atoms ${ }^{3} J_{\mathrm{P}-\mathrm{P}} \mathrm{ca} .17 \mathrm{~Hz}$).
The two ${ }^{1} \mathrm{H}$ peaks of the μ-OMe groups at 300 K (4.35 and 4.17 ppm) are also split into four at 190 K , although these four peaks are still very broad (Fig. 4). The peak at 4.35 ppm broadens more quickly as temperature is lowered, and is split into two broad signals 4.54 and 4.08 ppm) at 200 K . The 4.17 ppm signal at 300 K , on the other hand, is only barely resolved into two peaks (4.18 and 4.16 ppm) at 190 K . From the structure of $d / l-1$ (Fig. 2), it is apparent that two of the methoxo ligands [$\mathrm{C}(2)$ and $\mathrm{C}(3)$] point inwards and the other two [$\mathrm{C}(1)$ and $\mathrm{C}(4)]$ point outwards. The signals at 4.54 and 4.08 ppm are assigned to the internal methoxo protons, which are expected to have a larger difference in chemical shifts due to the larger difference in their chemical environments.
The fluxional motion of the molecule most probably results in the exchange of chemical environments between the two internal methoxo groups and that between the two external methoxo groups, in terms of their spatial relationships with the phenyl rings. The same process probably causes the exchange of environments between the internal phosphorus atoms and that between the terminal phosphorus atoms, since the tem-perature-dependent behaviors of the ${ }^{31} \mathrm{P}$ and methoxo proton signals are very similar.
An exchange mechanism that is consistent with the above observations involves the twisting of the two terminal $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ axes in the hptpd backbone. It is apparent from Fig. 2 that one of the terminal $\left\{\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\right\}$ segments $[\mathrm{P}(1)-\mathrm{P}(2)]$ adopts a δ gauche conformation, while the other $[\mathrm{P}(3)-\mathrm{P}(4)]$ adopts a λ

Fig. 1. Crystal structure of meso $-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\right.\right.$ hptpd $\left.)\right] \mathbf{1}$ (hydrogen atoms omitted for clarity).

Fig. 2. Crystal structure of $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$ (hydrogen atoms omitted for clarity).
conformation. The twisting of the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ axes most probably results in the interchange of the molecular conformation between $\{\delta[\mathrm{P}(1)-\mathrm{P}(2)], \lambda[\mathrm{P}(3)-\mathrm{P}(4)]\}$ and $\{\lambda[\mathrm{P}(1)-\mathrm{P}(2)], \delta[\mathrm{P}(3)-\mathrm{P}(4)]\}$. This twisting motion is probably correlated with the rotation of the phenyl rings. The anti conformation of the central $\left\{\mathrm{PCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{P}\right\}$ segment is probably maintained throughout, since that minimizes the steric interaction between the two bulky $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{PP})\right\}$ fragments.

2.1.4. Raman spectra of meso- and d/l-1

The X-ray crystallographic studies on d / l - and meso1 have shown that while the molecules of the former do not possess any symmetry elements, molecules of the latter possess both molecular and crystallographic i symmetry. The solid-state Raman spectrum of meso-1 is thus expected to contain fewer CO stretching peaks than that of the d / l isomers. The CO stretching absorptions in the IR spectra of both d / l - and meso $-\mathbf{1}$ are very intense and poorly resolved, resulting in broad $v_{\text {CO }}$ envelopes instead of sharp peaks. The $v_{\text {CO }}$ intensities in the Raman spectra, on the other hand, should be much weaker, and should give well-resolved peaks.

The Raman spectra of meso- and $d / l-\mathbf{1}$ in the v_{CO} region are shown in Fig. 5. It is evident that the diastereomers give distinctive spectra and that there are fewer peaks in the spectrum of the meso isomer. Raman spectroscopic studies of rhenium carbonyl complexes are uncommon [10]; especially the use of Raman spectroscopy to differentiate diastereomeric carbonyl complexes.

2.2. Reactions of other multidentate phosphines with

 $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH
2.2.1. Tris[2-(diphenylphosphino)ethyl]phosphine (tdppep)

The reaction of the tetraphosphine tdppep with the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH affords the complex $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-tdppep $\left.)\right] 2$ as the main product (21% based on Re). Only two of the phosphorus atoms of the tdppep ligand are coordinated to the $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragment, the other two remaining free. There is no evidence for the formation of any quadridentate coordinated tdppep-mono-rhenium species that are analogous to the other tdppep complexes reported [11].
It is interesting to note that the $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}\right\}$ core is bonded to the central phosphino group and one terminal phosphino group of the ligand, rather than to two terminal phosphino groups, i.e. [$\mathrm{Re}-\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}-\mathrm{Re}$] and not $\left[\mathrm{Re}-\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}-\mathrm{Re}\right]$. This again illustrates the preference of the $\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragment for short-chain diphosphines [3c].

2.2.2. Bis[2-(diphenylphosphino)ethyl]phenylphosphine (triphos)

The reaction of triphos with the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH affords the complexes $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \mu^{\prime}, \eta^{3}\right.\right.$-triphos $\left.)\left\{\operatorname{Re}_{2}(\mathrm{CO})_{9}\right\}\right] \quad 3$ and $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-triphos $\left.)\right] 4$, with yields of 10 and 9%, respectively. As in complexes $\mathbf{1}$ and $\mathbf{2}$, the $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}\right\}$ moieties in $\mathbf{3}$ and $\mathbf{4}$ are bonded to the $\left[\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right]$ fragment of the triphos ligand. Whilst the third phosphino group in $\mathbf{4}$ is uncoordinated, that in $\mathbf{3}$ is coordinated to an $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\right]$ fragment. It can
thus be deduced that $\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{~L})$ and rhenium methoxo carbonyl species are co-existent in the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH . No tridentate coordinated mono-rhenium complexes of triphos similar to those reported [12] were isolated from the reaction mixture.

Fig. 3. Variable-temperature ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of $d / l-\left[\left\{\operatorname{Re}_{2}(\mu\right.\right.$ $\left.\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(121.5 \mathrm{MHz}, 300-190 \mathrm{~K})$.

Fig. 4. Variable-temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\right.\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}\right.$-hptpd)] $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(121.5 \mathrm{MHz}, 300-190 \mathrm{~K})$.

2.2.3. 1,1,1-Tris(diphenylphosphinomethyl)ethane (tdppme)

The reaction of the triphosphine tdppme with the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH gave oily products which could not be crystallized, even after isolation by TLC. The major product gave FT-IR and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra that are consistent with the formulation $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}(\mathrm{tdppme})\right]$, with a unidentate-coordinated tdppme ligand. There is no evidence for the formation of species containing the $\left\{\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragment or that of tridentate coordinated mono-rhenium-tdppme species analogous to those reported [13].

Fig. 5. Solid-state laser Raman spectra of meso and $d / l-\left[\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] 1$ in the v_{CO} region.

3. Summary and conclusions

Reactions of the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with tetra- and tridentate phosphines afford novel polyphosphine-coordinated rhenium methoxo carbonyl complexes. The tetraphosphine hptpd gives a diastereomeric mixture of meso- and $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\right.\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}\right.$-hptpd $\left.)\right] \mathbf{1}$, which can be easily separated by extraction with benzene. Reactions with the tetraphosphine tdppep and triphosphine triphos yield the complexes $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-tdppep $\left.)\right] \mathbf{2}$, $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \mu^{\prime}, \eta^{3}\right.\right.$-triphos $\left.)\left\{\operatorname{Re}_{2}(\mathrm{CO})_{9}\right\}\right] \quad \mathbf{3}$ and $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.\right.$-triphos $\left.)\right] 4$, respectively. The formation of complexes $\mathbf{1 - 4}$ confirms the affinity of the $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragment for a bridging $\left\{\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\right\}$ unit, since all the available $\left\{\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\right\}$ units in each of the polyphosphines used are bonded to $\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ fragments. Any remaining phosphino groups not coordinated to $\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}$ units are either left uncoordinated or are terminally bonded to $\left\{\mathrm{Re}_{2}(\mathrm{CO})_{9}\right\}$ fragments. The complex $d / l \mathbf{- 1}$ is fluxional at room temperature; the fluxional motion
probably involves the twisting of the two terminal $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ axes in the hptpd backbone, which is correlated with the rotation of the phenyl rings.

4. Experimental

All reactions were performed under pure dry argon using standard Schlenk techniques. Solvents used were of reagent grade and were dried by published procedures and freshly distilled under argon before use. All other reagents were of AR grade and were obtained from commercial sources unless stated otherwise. All the polyphosphines were purchased from Aldrich and used as supplied. Precoated silica plates of layer thickness 0.25 mm were obtained from Merck. ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded at ca. 300 K at operating frequencies of 300.0 and 121.5 MHz , respectively. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ chemical shifts are quoted in ppm downfield of tetramethylsilane and external $80 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, respectively. Infrared spectra were recorded on a Perkin-Elmer 1600 FT-IR Spectrometer or a Bio-Rad

FT-IR Spectrometer. Laser Raman spectra were run using a Renishaw Raman Spectrometer with a 782 nm laser and a scan range of $150-3000 \mathrm{~cm}^{-1}$. The Raman samples in microcrystalline form were loaded on a platinum plate and covered with thin silica glass. Elemental analyses were performed by the Microanalytical Laboratory, Department of Chemistry, National University of Singapore.
4.1. Reaction of the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with 1,1,4,7,10,10-hexaphenyl-1,4,7,10,tetraphosphadecane (hptpd)

A solution of $\mathrm{Me}_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.062 \mathrm{~g}, 0.56 \mathrm{mmol})$ in THF-MeOH (1:1, $20 \mathrm{~cm}^{3}$) was transferred into a Schlenk flask containing a stirred solution of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ ($0.151 \mathrm{~g}, 0.23 \mathrm{mmol}$) in $\operatorname{THF}\left(10 \mathrm{~cm}^{3}\right)$ at room temperature (r.t.). The resultant yellow solution was stirred in vacuo for 4 h at r.t. This intermediate solution was clear green-yellow. Solid $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}(\mathrm{Ph})\left(\mathrm{CH}_{2}\right)_{2}-$ $\mathrm{P}(\mathrm{Ph})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$, hptpd ($0.077 \mathrm{~g}, 0.115 \mathrm{mmol}$) was then introduced and the light-yellow solution so formed was stirred in vacuo for 1 h . The solution was stirred for another 3 h under argon. The solution became colorless and solvent was removed under reduced pressure. The resultant white residue was redissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on silica TLC plates (2:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane).

The mixture of meso- and $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}-\right.\right.$ $\left.(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}\right.$-hptpd)] 1 was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from the main band ($R_{\mathrm{f}} 0.23$). Layering of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with hexane gave a mixture of meso- and $d / l-\mathbf{1}$ as a white powder, total yield $0.039 \mathrm{~g}(18 \%$ based on Re). $\mathrm{C}_{58} \mathrm{H}_{54} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Re}_{4}\left(f_{w} 1875.5\right)$ requires: $\mathrm{C}, 37.1 ; \mathrm{H}, 2.9 ; \mathrm{P}$, 6.6; Re, 39.7%. Found: C, 37.3; H, 3.0; P, 6.7; Re, 39.7%. The powder was stirred with benzene $\left(20 \mathrm{~cm}^{3}\right)$ at r.t. for 30 min , during which time $d / l-\mathbf{1}$ dissolved. The insoluble meso- $\mathbf{1}$ was separated by filtration and recrystallized by slow evaporation of its solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane to give colorless prismatic crystals. $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2026 \mathrm{~s}, 2009 \mathrm{~m}, 1924 \mathrm{~m}, 1899 \mathrm{~s}(\mathrm{sh})$, $1890 \mathrm{~s}(\mathrm{CO})$; $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (THF) $2025 \mathrm{~s}, 2009 \mathrm{~m}, 1924 \mathrm{~m}, 1900 \mathrm{~s}(\mathrm{sh})$, $1894 \mathrm{~s}(\mathrm{CO}) . \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \quad 15.5(\mathrm{~s}), 11.3(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $7.57-7.18(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 4.12\left(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right), 4.06(\mathrm{~s}$, $6 \mathrm{H}, \mu-\mathrm{OCH}_{3}$), 2.60 (br, $4 \mathrm{H}, \mathrm{CH}_{2}$), 2.11 (br, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.3 (s, $4 \mathrm{H}, \mathrm{CH}_{2}$).

Colourless plate-like crystals of $d / l \mathbf{- 1}$ were obtained by layering the benzene solution with hexane. $\tilde{v}_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2026 \mathrm{~s}, 2009 \mathrm{~m}, 1924 \mathrm{~m}, 1900 \mathrm{~s}, 1888 \mathrm{~s}$ (CO); $\tilde{v}_{\max } / \mathrm{cm}^{-1}$ (THF) 2026s, 2009m, 1923 m , $1900 \mathrm{~s}(\mathrm{sh}), 1880 \mathrm{vs}(\mathrm{CO}) ; \tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 2028 \mathrm{~s}$, $2012 \mathrm{~m}, \quad 1927 \mathrm{~m}, \quad 1907 \mathrm{~s}, \quad 1897 \mathrm{~s} \quad 1881 \mathrm{~s}(\mathrm{sh}) \quad$ (CO). $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 16.7(s), 7.9(s); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.57-7.18(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{Ph}), 4.34\left(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right), 4.15\left(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right)$, 2.8 (m, br, 4H, CH $)$, 2.2 (br, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.9 (br, 4 H , $\left.\mathrm{CH}_{2}\right) . \delta_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 16.9(\mathrm{~s}), 8.4(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 7.58-6.93(\mathrm{~m}$,
$30 \mathrm{H}, \mathrm{Ph}$), 4.46 ($\mathrm{s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}$), 4.28 ($\mathrm{s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}$), 2.55 (m, br, 4H, CH2), 2.08 (br, 4H, CH2), 1.68 (br, 4H, CH_{2}). Solubility in solvents: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}>$ benzene > hexane. The ratio of yields of meso and $d / l-\mathbf{1}$ was ca. 3:2.

4.2. Synthesis of meso- and d/l-[\{Ree $\left.(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}-$ ($\mu, \mu^{\prime}-$ hptpd) 11 via controlled acidolysis of $\left[R_{2}{ }_{2}\right.$ $\left.(\mu-\mathrm{OMe})_{3}(\mathrm{CO})_{6}\right]^{-}$in the presence of hptpd

A solution of p-toluenesulfonic acid monohydrate ($0.038 \mathrm{~g}, 0.20 \mathrm{mmol}$) in $10 \mathrm{~cm}^{3}$ of CHCl_{3} and $10 \mathrm{~cm}^{3}$ MeOH was transferred into a stirred solution of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{3}(\mathrm{CO})_{6}\right](0.152 \mathrm{~g}, 0.20 \mathrm{mmol})$ and hptpd ($0.067 \mathrm{~g}, 0.10 \mathrm{mmol}$) in $10 \mathrm{~cm}^{3}$ of CHCl_{3}. The resultant mixture was stirred under argon for 2 h . The solvent was then removed under reduced pressure. The residue obtained was redissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on silica TLC plates (2:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). The mixture of complexes mesoand $d / l-\left[\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\mathrm{hptpd}\right)\right] \mathbf{1}$ was isolated from the main band ($R_{\mathrm{f}} 0.23$) and resolved as described above. Yield of meso-1, $0.028 \mathrm{~g}(15 \%)$. Yield of $d / l-\mathbf{1}, 0.048 \mathrm{~g}(26 \%)$.

4.3. Reaction of the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with tris[2-(diphenylphosphino)ethyllphosphine (tdppep)

The reaction was carried out in a similar manner to that described above except that hptpd was replaced by $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{P}$, tdppep $(0.077 \mathrm{~g}, 0.115 \mathrm{mmol})$. The residue obtained after evaporation of the reaction mixture was redissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for TLC (2:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane). The complex $\left[\left\{\mathrm{Re}_{2}(\mu-\right.\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.$-tdppep) $\mathbf{2}$ was isolated from main band at $R_{\mathrm{f}}=0.35$, and fine colorless crystals of $\mathbf{3}$ were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. Yield $0.064 \mathrm{~g}(21 \%)$. $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Re}_{2}\left(f_{w} 1273\right)$ requires $\mathrm{C}, 47.1 ; \mathrm{H}, 3.8 ; \mathrm{P}$, 9.7%. Found C, $46.6 ; \mathrm{H}, 3.9 ;$ P, $9.9 \% . \tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2024 \mathrm{~s}, 2007 \mathrm{~m}, 1921 \mathrm{~m}, 1896 \mathrm{~s}(\mathrm{sh}), 1889 \mathrm{vs}$ (CO); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2025 \mathrm{~s}, 2008 \mathrm{~m}, 1922 \mathrm{~m}$, $1897 \mathrm{~s}(\mathrm{sh}), 1890 \mathrm{vs}(\mathrm{CO}) . \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right): 15.6$ (s, 1P, coord. $\left.\mathrm{PPh}_{2}\right), 10.8\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}, J_{\mathrm{P}-\mathrm{P}}=30 \mathrm{~Hz}\right),-12.6(\mathrm{~d}$, 2P, uncoord. $\left.\mathrm{PPh}_{2}, J_{\mathrm{P}-\mathrm{P}}=30 \mathrm{~Hz}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 7.5-7.3$ $(\mathrm{m}, 30 \mathrm{H}, \mathrm{Ph}), 4.08\left(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right), 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.0-1.9\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.8-1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.

4.4. Reaction of the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with bis(2-diphenylphosphinoethyl)phenylphosphine (triphos)

The reaction was carried out as described for the reaction with hptpd except that hptpd was replaced by $\mathrm{PhP}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right]_{2}$, triphos ($0.082 \mathrm{~g}, 0.154 \mathrm{mmol}$). The resultant residue was treated similarly by TLC (2:3
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). The complexes $\quad\left[\left\{\mathrm{Re}_{2}(\mu-\mathrm{OMe})_{2}-\right.\right.$ $\left.(\mathrm{CO})_{6}\right\}\left(\mu, \mu^{\prime}, \eta^{3}\right.$-triphos) $\left.\left\{\mathrm{Re}_{2}(\mathrm{CO})_{9}\right\}\right] \quad 3$ and $\left[\left\{\mathrm{Re}_{2}(\mu-\right.\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}\left(\mu, \eta^{2}\right.$-triphos $\left.)\right] 4$ were isolated from main bands at $R_{\mathrm{f}}=0.47$ and 0.40 , respectively.

Fine off-white crystals of complex $\mathbf{3}$ were obtained by the slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution of the complex over 1 week. Yield $0.021 \mathrm{~g}(10 \%$ based on $\mathrm{Re}) . \mathrm{C}_{51} \mathrm{H}_{39} \mathrm{O}_{17} \mathrm{P}_{3} \mathrm{Re}_{4}\left(f_{w} 1761\right)$ requires $\mathrm{C}, 34.8 ; \mathrm{H}, 2.2$; $\mathrm{P}, 5.3 \%$. Found C, $34.1 ; \mathrm{H}, 2.3 ; \mathrm{P}, 5.4 \% . \tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2106 \mathrm{w}, 2033 \mathrm{w}(\mathrm{sh}), 2026 \mathrm{~m}, 2007 \mathrm{~m}(\mathrm{sh}), 1996 \mathrm{vs}$, $1963 \mathrm{~m}, 1937 \mathrm{~m}(\mathrm{sh}), \underline{1925 \mathrm{~s}}, \underline{1897 \mathrm{~s}(\mathrm{sh}), \underline{1890 \mathrm{~s}} \text { (CO) (un- }}$ derlined absorption maxima are assigned to the $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right]$ fragment, the others are assigned to the $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\right]$ fragment). $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: 16.3 (d, $\mathrm{Ph}_{2} \mathrm{P}-$ $\left.\mathrm{ReOMe}, J_{\mathrm{P}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 9.6\left(\mathrm{dd}, \mathrm{PPh}-\mathrm{ReOMe}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $\left.27 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{P}}^{\prime}=6.5 \mathrm{~Hz}\right), 8.4\left[\mathrm{~d}, \mathrm{PPh}_{2}-\mathrm{Re}_{2}(\mathrm{CO})_{9}, J_{\mathrm{P}-\mathrm{P}}=27\right.$ Hz . $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.71-6.90(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ph}), 4.14(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mu-\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right), 2.8-2.2(\mathrm{~m}, \mathrm{br}, 8 \mathrm{H}$, CH_{2}).

Complex 4 was obtained as a white powder by the slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution of the complex over 1 week. Yield $0.023 \mathrm{~g}(9 \%$ based on Re). $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{P}_{3} \mathrm{Re}_{2}\left(f_{w} 1137\right)$ requires $\mathrm{C}, 44.3 ; \mathrm{H}, 3.4 ; \mathrm{P}$, 8.2%. Found. C, 43.8; H, 3.5; P, 8.1\%. $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 2024 \mathrm{~s}, \quad 2008 \mathrm{~m}, 1922 \mathrm{~m}, 1897 \mathrm{~s}(\mathrm{sh}), 1890 \mathrm{vs}$ $(\mathrm{CO}) . \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.6-7.2(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ph}), 4.17(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mu-\mathrm{OCH}_{3}\right), 4.09\left(\mathrm{~s}, 3 \mathrm{H}, \mu-\mathrm{OCH}_{3}\right), 2.7-1.8\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 15.7$ (d, coord. $\mathrm{Ph}_{2} \mathrm{P}, J_{\mathrm{P}-\mathrm{P}}=6 \mathrm{~Hz}$), 10.8 (dd, coord. $\left.\mathrm{PhP}, J_{\mathrm{P}-\mathrm{P}}=29 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{P}}^{\prime}=6 \mathrm{~Hz}\right),-12.9(\mathrm{~d}$, free $\mathrm{Ph}_{2} \mathrm{P}, J_{\mathrm{P}-\mathrm{P}}=29 \mathrm{~Hz}$).

4.5. Reaction of the mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Me}_{3} \mathrm{NO}$ and MeOH with 1,1,1-tris(diphenyl-phosphinomethyl)ethane (tdppme)

The reaction was carried out as described for the reaction with hptpd except that hptpd was replaced by $\mathrm{CH}_{3} \mathrm{C}\left[\mathrm{CH}_{2} \mathrm{PPh}_{2}\right]_{3}$, tdppme ($0.096 \mathrm{~g}, 0.154 \mathrm{mmol}$). The resultant residue was treated similarly by TLC (2:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). The product extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from the main band ($R_{\mathrm{f}} 0.73$) was oily and could not be crystallized. From its FT-IR and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra, the product was tentatively identified as $\left[\mathrm{Re}_{2}(\mathrm{CO})_{9}\right.$ (tdppme)]. $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2103 \mathrm{w}, 2032 \mathrm{w}, 1993 \mathrm{vs}$, $1960 \mathrm{~m}, 1933 \mathrm{~m}(\mathrm{CO}) . \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $-4.6(\mathrm{~s}, 1 \mathrm{P}$, coord. $\left.\mathrm{Ph}_{2} \mathrm{P}\right),-7.1\left(\mathrm{~s}, 2 \mathrm{P}\right.$, free $\left.\mathrm{Ph}_{2} \mathrm{P}\right)$.

4.6. X-ray crystallography

The crystallographic data for meso- and $d / l \mathbf{- 1}$ are summarized in Table 1, and selected bond lengths and angles for meso- $\mathbf{1}$ are given in Table 2.

4.6.1. meso- $\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-h p t p d\right)\right] 1$

Single colorless crystals of meso-1 were grown by slow evaporation of a solution of the complex in

Table 1
Crystallographic data for meso and $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\right.\right.$ hptpd)] $\mathbf{1 ~}^{\text {a }}$

	meso-1	$d / l-1$
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / n$	$P \overline{1}$
Unit cell dimensions		
$a(\AA)$	13.001(1)	12.963(8)
$b(\AA)$	18.990(2)	13.994(12)
$c(\mathrm{~A})$	13.267(3)	20.09(2)
$\alpha\left({ }^{\circ}\right)$	90	79.32(6)
$\beta\left({ }^{\circ}\right)$	94.76(1)	75.06(5)
$\gamma\left({ }^{\circ}\right)$	90	68.34(5)
$V\left(\AA^{3}\right)$	3264.1(9)	3256(5)
$\mu\left(\mathrm{mm}^{-1}\right)$	7.65	7.57
Absorption corrections	ψ-scans	Face-indexed numerical
Min/max transmission	0.687, 0.999	0.488, 0.736
Diffractometer	Nonius	Siemens P4
Max. $2 \theta\left({ }^{\circ}\right)$	49.8	50.0
$h k l$ range	$\begin{aligned} & -15 \text { to } 15, \\ & 0 \text { to } 22,0 \text { to } 15 \end{aligned}$	$\begin{aligned} & -1 \text { to } 15,-15 \text { to } 16, \\ & -23 \text { to } 23 \end{aligned}$
Reflections measured	6009	13120
Unique	5742	11460
reflections ($R_{\text {int }}$)	(0.015, based on F)	(0.061, based on F^{2})
$\begin{aligned} & R_{1},{ }^{\mathrm{b}} \mathrm{w} R^{\mathrm{c}} \\ & {[I>2 \sigma(I)]} \end{aligned}$	$0.028,0.029\left(R_{\mathrm{w}}\right)^{\text {d }}$	0.070, 0.135

${ }^{\text {a }}$ Details in common: chemical formula $\mathrm{C}_{58} \mathrm{H}_{54} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Re}_{4} ; M$, 1875.7; $Z, 2$; temperature of $297 \pm 2 \mathrm{~K}$; graphite-monochromated Mo- K_{α} radiation; $\theta-2 \theta$ scan mode.
${ }^{\mathrm{b}} R_{1}=\Sigma \| F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid$.
${ }^{c} w R=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.
${ }^{\mathrm{d}} R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2}$.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at r.t. The number of data used for structure solution and refinement was 3807 [$I>$ $2.0 \sigma(I)]$. The structure was solved by direct methods (MULTAN [14]). Refinement (on F) was carried out by the full-matrix least-squares method with all non-hydrogen atoms being allowed anisotropic motion. All hydrogen atoms were held fixed in the final cycles of least-squares refinement. The last least-squares cycle was calculated with 370 parameters and 3807 reflections. The weighting function used was $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}\right)+$ $0.000100 F_{\mathrm{o}}^{2}$. The maximum shift $/ \sigma$ ratio was less than 0.001 . In the last difference map the deepest hole was $-0.760 \mathrm{e}^{\AA^{-3}}$, and the highest peak was $0.550 \mathrm{e} \AA^{-3}$. Computations were carried out on a Microvax 3600 computer with the NRCVAX system [15].

4.6.2. $d / l-\left[\left\{\operatorname{Re}_{2}(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-h p t p d\right)\right] 1$

Single colorless crystals of $d / l-\mathbf{1}$ were grown by layering a solution of the compound in benzene with hexane. The number of data used for structure solution and refinement was $5980[I>2.0 \sigma(I)]$. The structure was solved by the heavy-atom method. All non-hydrogen atoms were refined anisotropically by the full-matrix

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex meso- $-\left\{\mathrm{Re}_{2}-\right.$ $\left.(\mu-\mathrm{OMe})_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu, \mu^{\prime}-\right.$ hptpd $\left.)\right] \mathbf{1}$

Bond lengths			
$\operatorname{Re}(1) \cdots \operatorname{Re}(2)$	3.3966 (9)	$\mathrm{Re}(1)-\mathrm{P}(1)$	2.485(2)
$\mathrm{Re}(1)-\mathrm{C}(1)$	1.889(9)	$\mathrm{Re}(1)-\mathrm{C}(2)$	$1.939(10)$
$\mathrm{Re}(1)-\mathrm{C}(3)$	1.894(10)	$\mathrm{Re}(1)-\mathrm{O}(7)$	2.146 (5)
$\mathrm{Re}(1)-\mathrm{O}(8)$	2.140 (5)	$\operatorname{Re}(2)-\mathrm{P}(2)$	2.478(2)
$\mathrm{Re}(2)-\mathrm{C}(4)$	1.916(10)	$\operatorname{Re}(2)-\mathrm{C}(5)$	1.932(9)
$\mathrm{Re}(2)-\mathrm{C}(6)$	$1.896(9)$	$\mathrm{Re}(2)-\mathrm{O}(7)$	2.161(5)
$\mathrm{Re}(2)-\mathrm{O}(8)$	$2.148(5)$		
Bond angles			
$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{C}(1)$	88.5(3)	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{C}(2)$	174.5(3)
$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{C}(3)$	93.7(3)	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{O}(7)$	90.1(1)
$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{O}(8)$	83.7(1)	$\mathrm{O}(7)-\mathrm{Re}(1)-\mathrm{O}(8)$	73.3(2)
$\mathrm{O}(7)-\operatorname{Re}(1)-\mathrm{C}(3)$	97.8(3)	$\mathrm{O}(8)-\mathrm{Re}(1)-\mathrm{C}(3)$	170.7(3)
$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(3)$	87.5(4)	$\mathrm{P}(2)-\mathrm{Re}(2)-\mathrm{C}(4)$	90.8(3)
$\mathrm{P}(2)-\mathrm{Re}(2)-\mathrm{C}(5)$	174.7(2)	$\mathrm{P}(2)-\mathrm{Re}(2)-\mathrm{C}(6)$	88.4(3)
$\mathrm{P}(2)-\mathrm{Re}(2)-\mathrm{O}(7)$	89.0(1)	$\mathrm{P}(2)-\mathrm{Re}(2)-\mathrm{O}(8)$	86.2(1)
$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{O}(8)$	72.8(2)	$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{C}(5)$	95.5(3)
$\mathrm{O}(8)-\operatorname{Re}(2)-\mathrm{C}(5)$	97.8(3)	$\mathrm{C}(4)-\mathrm{Re}(2)-\mathrm{C}(6)$	87.5(4)
$\mathrm{Re}(1)-\mathrm{O}(7)-\mathrm{Re}(2)$	104.2(2)	$\mathrm{Re}(1)-\mathrm{O}(8)-\mathrm{Re}(2)$	104.8(2)
$\mathrm{Re}(1)-\mathrm{P}(1)-\mathrm{C}(9)$	120.4(2)	$\mathrm{Re}(2)-\mathrm{P}(2)-\mathrm{C}(10)$	116.9(2)
$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	115.6(5)	$\mathrm{P}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	113.8(5)

least-squares method (on F^{2}). Hydrogen atoms were introduced in calculated positions and refined isotropically (riding model) in the final cycles of least-squares refinement. The last least-squares cycle was calculated with 721 parameters and 11401 data (all of the unique reflections except very negative ones). The weighting function used was $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0600 P)^{2}$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. The maximum shift $/ \sigma$ ratio was 0.008 . In the last difference map the deepest hole was $-2.467 \mathrm{e}^{-3}{ }^{-3}$, and the highest peak was $2.352 \mathrm{e} \AA^{-3}$ [within $1 \AA$ from $\operatorname{Re}(2)$]. Computations were carried out on a Pentium PC using the shelxtl plus software package [16].

5. Crystallographic data

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 127345 for meso-1, 121769 for $d / l-\mathbf{1}$.

Acknowledgements

We thank the National University of Singapore (NUS) (RP 950695), the National Institute of Education, Nanyang Technological University (RP 15/95 YYK), and the Academia Sinica, Taipei, for financial support. Technical assistance from the staff of the NMR Laboratory, Department of Chemistry, NUS is
acknowledged. C.H.J. is grateful to NUS for a scholarship award.

References

[1] (a) S.K. Mandal, D.M. Ho, M. Orchin, Organometallics 12 (1993) 1714. (b) R.G. Bergman, Polyhedron 14 (1995) 3227. (c) R.D. Simpson, R.G. Bergman, Organometallics 12 (1993) 781. (d) R.D. Simpson, R.G. Bergman, Organometallics 11 (1992) 4306.
[2] (a) H.E. Bryndza, W. Tam, Chem. Rev. 88 (1988) 1163. (b) J.D. Gargulak, A.J. Berry, M.D. Noirot, W.L. Gladfelter, J. Am. Chem. Soc. 114 (1992) 8933. (c) D.J. Darensbourg, B.L. Mueller, J.H. Reibenspies, C.J, Bischoff, Inorg. Chem. 29 (1990) 1789.
[3] (a) C.H. Jiang, Y.-S. Wen, L.-K. Liu, T.S.A. Hor, Y.K. Yan, Organometallics 17 (1998) 173. (b) C.H. Jiang, Y.-S. Wen, L.-K. Liu, T.S.A. Hor, Y.K. Yan, J. Organomet. Chem. 543 (1997) 179. (c) P.M.N. Low, Y.L. Yong, Y.K. Yan, T.S.A. Hor, S.-L. Lam, K.K. Chan, C. Wu, S.C.F. Au-Yeung, Y.-S. Wen, L.-K. Liu, Organometallics 15 (1996) 1369. (d) Y.K. Yan, H.S.O. Chan, T.S.A. Hor, K.L. Tan, L.-K. Liu, Y.-S. Wen, J. Chem. Soc. Dalton Trans. (1992) 423. (e) T.S.A. Hor, C.F. Lam, Y.K. Yan, Bull. Singap. Natl. Inst. Chem. 19 (1991) 115. (f) S.L. Lam, Y.X. Cui, S.C.F. Au-Yeung, Y.K. Yan, T.S.A. Hor, Inorg. Chem. 33 (1994) 2407.
[4] (a) R.B. King, P.N. Kapoor, J. Am. Chem. Soc. 91 (1969) 5191. (b) R.B. King, P.N. Kapoor, J. Am. Chem. Soc. 93 (1971) 4158.
[5] (a) H.A. Mayer, W.C. Kaska, Chem. Rev. 94 (1994) 1239. (b) R.B. King, J.C. Cloyd, Jr., Inorg. Chem. 14 (1975) 1550. (c) R.B. King, P.N. Kapoor, Inorg. Chem. 11 (1972) 1524.
[6] (a) A.L. Airey, G.F. Swiegers, A.C. Willis, S.B. Wild, Inorg. Chem. 36 (1997) 1588. (b) C. Bachmann, W. Oberhauser, P. Brueggeller, Polyhedron 15 (1996) 2223. (c) K. Dillinger, W. Oberhauser, Ch. Bachmann, P. Brueggeller, Inorg. Chim. Acta 223 (1994) 13. (d) H. Goller, P. Brueggeller, Inorg. Chim. Acta 197 (1992) 75. (e) W. Oberhauser, Ch. Bachmann, P. Brueggeller, Polyhedron 14 (1995) 787. (f) J.-D. Chen, F.A. Cotton, B. Hong, Inorg. Chem. 32 (1993) 2343. (g) R. Cotton, J.C. Traeger, V. Tedesco, Inorg. Chim. Acta 210 (1993) 193.
[7] (a) F.A. Cotton, B. Hong, M. Shang, G.G. Stanley, Inorg. Chem. 32 (1993) 3620. (b) D.E. Rende, Y. Kim, C.M. Beck, A. Wojcicki, Inorg. Chim. Acta 240 (1995) 435.
[8] J.N. Brown, L.R. Canning, J. Organomet. Chem. 267 (1984) 179.
[9] A.L. Airey, G.F. Swiegers, A.C. Willis, S.B. Wild, Inorg. Chem. 36 (1997) 1588.
[10] U.A. Jayasoorya, C.E. Anson, O. Al-Jowder, G. D'Alfonso, P.L. Stanghellini, R. Rossetti, Surf. Sci. 294 (1993) 131.
[11] D.M. Heinekey, M. van Roon, J. Am. Chem. Soc. 118 (1996) 12134.
[12] (a) Y. Kim, FJ. Gallucci, A. Wojcicki, Organometallics 11 (1992) 1963. (b) Y. Kim, H. Deng, D.W. Meek, A. Wojcicki, J. Am. Chem. Soc. 112 (1990) 2798. (c) X.-L. Luo, R.H. Crabtree, J. Chem. Soc. Dalton Trans. (1991) 587. (d) Y. Kim, J. Gallucci, A. Wojcicki, J. Am. Chem. Soc. 112 (1990) 8600.
[13] (a) S.P. Ginsberg, S.C. Abrahams, P. Marsh, K. Ataka, C.R.F. Sjprinkle, J. Chem. Soc. Chem. Commun. (1984) 1321. (b) S.C. Abrahams, A.P. Ginsberg, T.F. Koetzle, P. Marsh, C.P. Sprinkle, Inorg. Chem. 25 (1986) 2500. (c) M.T. Costello, P.E. Fanwick, M.A. Green, R.A. Walton, Inorg. Chem. 31 (1992) 2359. (d) H.P. Guntz, G.J. Leigh, J. Chem. Soc. A (1971) 2229. (e) J. Ellermann, H.A. Lindner, M. Moll, Chem. Ber. 112 (1979) 3441. (f) J. Ellermann, H.A. Lindner, H. Gaebelein, J. Organomet. Chem. 172 (1979) 39. (g) C. Bianchini, M. Peruzzini, F. Zanobini, L. Magon, L. Marvellik, R. Rossi, J. Organomet. Chem. 451 (1993) 97.
[14] P. Main, S.E. Fiske, S.L. Hull, G. Germaine, J.P. Declerq, M.H. Woolfson, multan, A System of Computer Programs for Crystal Structure Determination from X-ray Diffraction Data, University of York and Louvain, Belgium, 1980.
[15] E.J. Gabe, Y. Le Page, J.-P. Charland, F.L. Lee, P.S. White, J. Appl. Cryst. 22 (1989) 384.
[16] G.M. Sheldrick, shelxtl pC, Version 5.03, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.

[^0]: * Corresponding author. Fax: + 65-469-8952.

 E-mail address: ykyan@nie.edu.sg (Y.K. Yan)
 ${ }^{1}$ Also corresponding author.

